Module: matrix

A utility module that contains some common matrix operations as well as decompositions
Source:

Methods

(static) getMatrix(number[][]opt, arrayopt, numberopt, numberopt)

Get a submatrix of matrix
Parameters:
Name Type Attributes Description
number[][] <optional>
matrix - original matrix
array <optional>
r - Array of row indices.
number <optional>
j0 - Initial column index
number <optional>
j1 - Final column index
Source:
Returns:
[number[][]] X is the submatrix matrix(r(:),j0:j1)

(static) getSubMatrix(number[][]opt, numberopt, numberopt, numberopt, numberopt)

Get a submatrix of matrix
Parameters:
Name Type Attributes Description
number[][] <optional>
matrix - original matrix
number <optional>
i0 - Initial row index
number <optional>
i1 - Final row index
number <optional>
j0 - Initial column index
number <optional>
j1 - Final column index
Source:
Returns:
matrix(i0:i1,j0:j1)

(static) LUDecomposition() → {Array.<Array.<number>>}

LUDecomposition to solve A*X = B, based on WEKA code
Source:
Returns:
X so that L*U*X = B(piv,:)
Type
Array.<Array.<number>>

(static) mult(matrix1, matrix2) → {Array.<Array.<number>>}

Linear algebraic matrix multiplication, matrix1 * matrix2
Parameters:
Name Type Description
matrix1 Array.<Array.<number>>
matrix2 Array.<Array.<number>>
Source:
Returns:
Matrix product, matrix1 * matrix2
Type
Array.<Array.<number>>

(static) QRDecomposition(number[][]opt, number[][]opt)

Least squares solution of A*X = B, based on WEKA code
Parameters:
Name Type Attributes Description
number[][] <optional>
A - left side matrix to be solved
number[][] <optional>
B - a matrix with as many rows as A and any number of columns.
Source:
Returns:
[number[][]] X - that minimizes the two norms of QR*X-B.

(static) transpose(matrix) → {Array.<Array.<number>>}

Transposes an mxnnumber[][]
Parameters:
Name Type Description
matrix Array.<Array.<number>> of mxn dimensionality
Source:
Returns:
transposed matrix
Type
Array.<Array.<number>>