Source: mat.js

define('matrix', function() {
    "use strict"
    
    /**
     * A utility module that contains some common matrix operations as well as decompositions
     * @alias module:matrix
     * @exports matrix
     */
    var mat = {};

    /**
     * Transposes an mxnnumber[][]
     * @param {number[][]} matrix - of mxn dimensionality
     * @return {number[][]} transposed matrix
     */
    mat.transpose = function(matrix){
        var m = matrix.length;
        var n = matrix[0].length;
        var transposedMatrix = new Array(n);
        for (var i = 0; i < n; i++){
            transposedMatrix[i] = new Array(m);
        }  
        for (var i = 0; i < m; i++){
            for (var j = 0; j < n; j++){
                transposedMatrix[j][i] = matrix[i][j];
            }
        }
        return transposedMatrix;
    }

    /** 
     * Get a submatrix of matrix
     * @param [number[][]] matrix - original matrix
     * @param [array] r - Array of row indices.
     * @param [number] j0 - Initial column index
     * @param [number] j1 - Final column index
     * @return [number[][]] X is the submatrix matrix(r(:),j0:j1)
     */
    mat.getMatrix = function(matrix, r, j0, j1){
        var X = new Array(r.length);
        for(var i=0; i<r.length; i++){
            X[i] = new Array(j1-j0+1);
        }
        for (var i = 0; i < r.length; i++){
            for (var j = j0; j <= j1; j++){
                X[i][j-j0] = matrix[r[i]][j];
            }
        }
        return X;
    }

    /** 
     * Get a submatrix of matrix
     * @param [number[][]] matrix - original matrix
     * @param [number] i0 - Initial row index
     * @param [number] i1 - Final row index
     * @param [number] j0 - Initial column index
     * @param [number] j1 - Final column index
     * @return matrix(i0:i1,j0:j1)
     */
    mat.getSubMatrix = function(matrix, i0, i1, j0, j1){
        var X = new Array(i1-i0+1);
        for(var i=0; i<i1-i0+1; i++){
            X[i] = new Array(j1-j0+1);
        }
        for (var i = i0; i <= i1; i++){
            for (var j = j0; j <= j1; j++){
                X[i-i0][j-j0] = matrix[i][j];
            }
        }
        return X;
    }

    /** 
     * Linear algebraic matrix multiplication, matrix1 * matrix2
     * @param {number[][]} matrix1
     * @param {number[][]} matrix2
     * @return {number[][]} Matrix product, matrix1 * matrix2
     */
    mat.mult = function(matrix1, matrix2){	
        if (matrix2.length != matrix1[0].length){
            console.log("Matrix inner dimensions must agree.");
        }
        var X = new Array(matrix1.length);
        for (var i = 0; i < matrix1.length; i++){
            X[i] = new Array(matrix2[0].length);
        }  
        var Bcolj = new Array(matrix1[0].length);
        for (var j = 0; j < matrix2[0].length; j++){
            for (var k = 0; k < matrix1[0].length; k++){
                Bcolj[k] = matrix2[k][j];
            }
            for (var i = 0; i < matrix1.length; i++){
                var Arowi = matrix1[i];
                var s = 0;
                for (var k = 0; k < matrix1[0].length; k++){
                    s += Arowi[k]*Bcolj[k];
                }
                X[i][j] = s;
            }
        }
        return X;
    }


    /**
     * LUDecomposition to solve A*X = B, based on WEKA code
     * @param{number[][]} A - left matrix of equation to be solved
     * @param{number[][]} B - right matrix of equation to be solved
     * @return {number[][]} X so that L*U*X = B(piv,:)
     */
    mat.LUDecomposition = function(A,B){
        var LU = new Array(A.length);
        for(var i=0; i<A.length; i++){
            LU[i] = new Array(A[0].length);
        }
        for (var i = 0; i < A.length; i++){
            for (var j = 0; j < A[0].length; j++){
                LU[i][j] = A[i][j];
            }
        }
        var m = A.length;
        var n = A[0].length;
        var piv = new Array(m);
        for (var i = 0; i < m; i++){
            piv[i] = i;
        }
        var pivsign = 1;
        var LUrowi = new Array();
        var LUcolj = new Array(m);
        // Outer loop.
        for (var j = 0; j < n; j++){
            // Make a copy of the j-th column to localize references.
            for (var i = 0; i < m; i++){
                LUcolj[i] = LU[i][j];
            }
            // Apply previous transformations.
            for (var i = 0; i < m; i++){
                LUrowi = LU[i];
                // Most of the time is spent in the following dot product.
                var kmax = Math.min(i,j);
                var s = 0;
                for (var k = 0; k < kmax; k++){
                    s += LUrowi[k]*LUcolj[k];
                }
                LUrowi[j] = LUcolj[i] -= s;
            }
            // Find pivot and exchange if necessary.
            var p = j;
            for (var i = j+1; i < m; i++){
                if (Math.abs(LUcolj[i]) > Math.abs(LUcolj[p])){
                    p = i;
                }
            }
            if (p != j){
                for (var k = 0; k < n; k++){
                    var t = LU[p][k]; 
                    LU[p][k] = LU[j][k]; 
                    LU[j][k] = t;
                }
                var k = piv[p]; 
                piv[p] = piv[j]; 
                piv[j] = k;
                pivsign = -pivsign;
            }
            // Compute multipliers.
            if (j < m & LU[j][j] != 0){
                for (var i = j+1; i < m; i++){
                    LU[i][j] /= LU[j][j];
                }
            }
        }
        if (B.length != m){
            console.log("Matrix row dimensions must agree.");
        }
        for (var j = 0; j < n; j++){
            if (LU[j][j] == 0){
                console.log("Matrix is singular.")
            }
        }
        var nx = B[0].length;
        var X = mat.getMatrix(B,piv,0,nx-1);
        // Solve L*Y = B(piv,:)
        for (var k = 0; k < n; k++){
            for (var i = k+1; i < n; i++){
                for (var j = 0; j < nx; j++){
                    X[i][j] -= X[k][j]*LU[i][k];
                }
            }
        }
        // Solve U*X = Y;
        for (var k = n-1; k >= 0; k--){
            for (var j = 0; j < nx; j++){
                X[k][j] /= LU[k][k];
            }
            for (var i = 0; i < k; i++){
                for (var j = 0; j < nx; j++){
                    X[i][j] -= X[k][j]*LU[i][k];
                }
            }
        }
        return X;
    }

    /**
     * Least squares solution of A*X = B, based on WEKA code
     * @param [number[][]] A - left side matrix to be solved
     * @param [number[][]] B - a matrix with as many rows as A and any number of columns.
     * @return [number[][]] X - that minimizes the two norms of QR*X-B.
     */
    mat.QRDecomposition = function(A, B){
        // Initialize.
        QR = new Array(A.length);
        for(var i=0; i<A.length; i++){
            QR[i] = new Array(A[0].length);
        }
        for (var i = 0; i < A.length; i++){
            for (var j = 0; j < A[0].length; j++){
                QR[i][j] = A[i][j];
            }
        }
        var m = A.length;
        var n = A[0].length;
        var Rdiag = new Array(n);
        var nrm;

        // Main loop.
        for (var k = 0; k < n; k++){
            // Compute 2-norm of k-th column without under/overflow.
            nrm = 0;
            for (var i = k; i < m; i++){
                nrm = Math.hypot(nrm,QR[i][k]);
            }
            if (nrm != 0){
                // Form k-th Householder vector.
                if (QR[k][k] < 0){
                    nrm = -nrm;
                }
                for (var i = k; i < m; i++){
                    QR[i][k] /= nrm;
                }
                QR[k][k] += 1;

                // Apply transformation to remaining columns.
                for (var j = k+1; j < n; j++){
                    var s = 0; 
                    for (var i = k; i < m; i++){
                        s += QR[i][k]*QR[i][j];
                    }
                    s = -s/QR[k][k];
                    for (var i = k; i < m; i++){
                        QR[i][j] += s*QR[i][k];
                    }
                }
            }
            Rdiag[k] = -nrm;
        }
        if (B.length != m){
            console.log("Matrix row dimensions must agree.");
        }
        for (var j = 0; j < n; j++){
            if (Rdiag[j] == 0)
                console.log("Matrix is rank deficient");
        }
        // Copy right hand side
        var nx = B[0].length;
        X = new Array(B.length);
        for(var i=0; i<B.length; i++){
            X[i] = new Array(B[0].length);
        }
        for (var i = 0; i < B.length; i++){
            for (var j = 0; j < B[0].length; j++){
                X[i][j] = B[i][j];
            }
        }
        // Compute Y = transpose(Q)*B
        for (var k = 0; k < n; k++){
            for (var j = 0; j < nx; j++){
                var s = 0.0; 
                for (var i = k; i < m; i++){
                    s += QR[i][k]*X[i][j];
                }
                s = -s/QR[k][k];
                for (var i = k; i < m; i++){
                    X[i][j] += s*QR[i][k];
                }
            }
        }
        // Solve R*X = Y;
        for (var k = n-1; k >= 0; k--){
            for (var j = 0; j < nx; j++){
                X[k][j] /= Rdiag[k];
            }
            for (var i = 0; i < k; i++){
                for (var j = 0; j < nx; j++){
                    X[i][j] -= X[k][j]*QR[i][k];
                }
            }
        }
        return mat.getSubMatrix(X,0,n-1,0,nx-1);
    }

    return mat;
});