Music visualization with end-to-end learning

Bruno Godefroy, godefroy@kth.se
May 31, 2017

Source code: https://github.com/BGodefroyFR/Deep-Audio-Visualization
Live demo: https://bgodefroyfr.github.io/Deep-Audio-Visualization/web-app

1 Abstract

Music visualization is nowadays very commonly used in media player softwares, such as Winamp or
Itunes. These systems rely on the extraction of features from the raw audio, such as spectrograms, pitch
or timbre. Then, preprogrammed models, called ”presets”, define how animations behave, depending on
these features [IJ.

The features commonly used are usually hand-crafted and depend on some historical background. In
recent years, there has been increasing interest in using features learning and deep architectures instead,
thus reducing the required engineering effort and the need for prior knowledge.

Since autoencoders provide the best possible lower dimensional representation of some input data, this
could obviously present a great interest for visualization as well. In this project, we propose to experiment
some music visualization based on features extracted with a stacked autoencoder neural network.

2 Background and related work

Music visualization probably started with abstract film-making techniques, in the beginning of the 20"
century. Many artists, like Oskar Fischinger (1900-1967), started developing abstract musical animation
which " was composed of a series of geometric shapes and synchronized music” (CVM and Moritz, 2006-
13). Fischinger saw his experiments as a new art which he named Raumlichtmusik (space light music).
In the late 1940s, Fischinger also invented the Lumigraph, a mechanical instrument which was performed
to create imagery in public performances.

More recently, Ciuha et al. [2] have focused on visualizing harmonic relationships between tones and
colours. Based on a mathematical model, their system uses color hue and saturation to help the user
perceive tones, keys, dissonance and consonance.

Figure 1: Ciuha et al. [2]. Excerpt from Debussy’s Clair de Lune

In the same spirit, Dixon et al. [3] have implemented a real-time animation of a worm, based on music
tempo and loundness. The system is described as an intuitive view of a number of high-level aspects of
expressive music performance, which makes it a very useful tool for musical analysis.

Regarding end-to-end learning for feature extraction, S. Sigtia and S. Dixon [4] have demonstrated,
throughout their work, the efficiency of deep learning for sound analysis and compared various network
architectures. More generally, the literature provides many successful applications to feature learning,


https://github.com/BGodefroyFR/Deep-Audio-Visualization
https://bgodefroyfr.github.io/Deep-Audio-Visualization/web-app

such as music classification and music auto-tagging [6] [7, B8]. Their authors don’t always overcome
previous techniques, but demonstrate a great potential for future researches and applications.

3 Method

The system is composed of two main phases: feature extraction and real-time visualization. The first
one consists in training an autoencoder neural network and then inferring it to automatically extract
features from audio data. Then, some animation is generated from these features, in a Web browser, in
real time.

3.1 Features extraction

For this task, contrary to a majority of music visualization systems, like [2| 3], we don’t use hand-crafted
features. Instead, following the method from S. Dieleman and B. Schrauwen [5], those are directly in-
ferred from the data, thanks to a stacked autoencoder.

To do so, I have first created a training and a test dataset. Those contain spectrograms data, computed
using STFT (Short Time Fourier Transform), a Fourier transform computation over a short range of
time. This data are stored in LMDB files (Lightning Memory-Mapped Database), in order to efficiently
feed the neural network, during training.

The dimension of the input spectrograms depends on two parameters: audio sampling rate and window
size. The audio sampling rate represents the number of frames per second (usually 44.1 kHz or 48 kHz)
and the window size, the time period over which spectrograms are computed. The choice of these pa-
rameters is critical and I spent a lot of time to fine-tune them. Indeed, both parameters should have
reasonably low values in order to make learning computationally tractable. Finally I have reduced the
sampling rate to 4.096 kHz (which affects a lot the audio quality) and the window size has been set to 1
second.

For the audio data, I used random songs downloaded from YouTube, using Youtube-dl [I1]. This was
very useful to guarantee a wide range of music genres in training data. Then, some Python scripts handle
spectrograms extraction; using libraries, this is pretty straight-forward. This way, I made a training set
containing about 70,000 spectrograms (~ 350 songs) and a test set with about 12,000 spectrograms (~
60 songs).

—> Encoder —>E—> Decoder —>

original

input Reconstructed

input

Compressed
representation

Figure 2: The autoencoder framework

Deep architecture training is extremely demanding in computational power and memory, which makes
it often intractable with CPUs. Therefore, I have used a g2.2xlarge instance from AWS, which provided
me powerful GPUs for an efficient training (a few minutes). For the project, I have used a 10 layers
(4,096 * 2,048 * 1,024 * 512 * 64 * 10 * 64 * 512 * 1,024 * 2,048 * 4,096, 22 million parameters to learn!)
autoencoder, with fully-connected layers and sigmoid activation function, created with the library Caffe.

Once the model trained, the features extraction can be done easily. Given a song we want to visualize,
we extract its spectrograms and run a forward pass in the neural network for each of them, collecting the
middle layer output. That is, for each input spectrogram (of size window_size * sample_rate = 4,096),
the system generates a lower dimensional representation of the data (compression with loss) of size 10.
Finally, for a given song, we have a set of 10-dimensional features in JSON format, which could be used
later for visualization.



3.2 Real-time visualization

To make the project more interactive, I have chosen to implement visualization in Web browsers, with
Three.js, a JavaScript library which uses WebGL. Since it is very powerful and well-documented, imple-
menting the animation in browsers didn’t really increase the project difficulty.

The more challenging feature of the Web client was probably the synchronization of music and ani-
mation. Indeed, to produce its expected effect, sound and image need to be very precisely synchronized.
In practice, it is almost impossible to control the audio stream ; this is handled natively by browsers.
Therefore, the animation advancement needs to rely on the audio stream; at every tick, we check the
audio advancement and compute the animation based on it. This system enables to reliably manage
FPS variations or interruptions in audio stream and animation.

Thanks to the documentation and examples provided by Three.js, the implementation of the animations
themselves was pretty straight-forward. The main focus was about building a general framework so
that new animations could be added easily to the project, like presets. That is, each animations are
encapsulated into a class (”pseudo-class” from JavaScript) and follow a common template, consisting of
two methods which could be called by the Web application itself:

e init(): sets the scene, the camera and creates animation environment.

e update (timeDelta, parameters): updates the animation, given time elapsed since last update and
the animation parameters for the current frame (features extracted from the audio data).

In addition, a JSON file is created for each animation, defining how audio features should be mapped to
the input parameters of the animation.

Listing 1: Parameters file for the particle system animation

{

0.
0

"parameters”: |
{ 7name”: ”velocityRandomness”, "min”: 0.0, "max”: 3.0, ”step”: 0.5, "FPS”:
"name”: " positionRandomness”, "min”: 0.0, "max”: 3.0, "step”: 0.5, "FPS”:
{ p ; : : P :
{ "name”: ”size”, "min”: 1.0, "max”: 20.0, "step”: 5.0, "FPS”: 5.0 },
{ 7?name”: 7sizeRandomness”, "min”: 0.0, "max”: 25.0, ”step”: 5.0, "FPS”:
{ 7?name”: ”colorRandomness”, "min”: 0.0, "max”: 1.0, ”step”: 0.3, "FPS”:
{ 7name”: ”velocityRandomness”, "min”: 0.0, "max”: 3.0, ”step”: 0.8, "FPS”:
{ "name”: ”lifetime”, "min”: 0.1, "max”: 4.0, ”step”: 0.2, "FPS”: 3.0 },
"name”: " turbulence”, "min”: 0.0, "max”: 1.0, ”"step”: 0.1, "FPS”: 1.0
b ) b p b b
{ ”"name”: ”spawnRate”, "min”: 10.0, "max”: 1000.0, ”step”: 100, "FPS”: 3.0 },
{ 7?name”: ”timeScale”, "min”: 0.0, "max”: 1.0, ”step”: 0.3, "FPS”: 1.0 }

]
}

For each animation parameter, its mapping with the underlying features is described with:
e name: identifier of the parameter.

e min, max, step: how the feature should be mapped to fit the parameter. min and maz are the
bounds for the parameter and step represents its resolution. Considering the above parameters file,
the feature velocityRandomness, for instance, should be mapped into the set of values {0.0, 0.5,
1.0, 1.5, 2.0, 2.5, 3.0}.

e FPS: the maximum update rate of the parameter. This is useful for parameters, such as colorRan-
dommness, which should not be updated too frequently for a good visual effect (at most once every
10 seconds here).

4 Results and discussion

At the time of writing, the application is more a proof-of-concept prototype than a finished product.
Only basic features are implemented but it clearly demonstrates that the method works. Indeed, the
animation reacts well to rhythms and harmonic patterns, sometimes in very surprising ways. Since music
visualization is very intuitive and subjective, evaluating the quality of the system without collecting



people feedback seems almost impossible though.

For simplicity, the developed Web application is only front-end. That is, features are pre-computed and
the user could only play with provided sample songs. Also, there are only a few animation and those
could be improved a lot.

Considering features extraction, many hyper-parameters have not been fine-tuned (window size, sampling
rate, network architecture...) due to time constraints, but this would probably improve results as well.



References

1]

2]

8]

[9]

Robyn Taylor, Pierre Boulanger, and Daniel Torres. Real-time Music Visualizations using Responsive
Imagery.

P. Ciuha, B. Klemenc and F. Solina Visualization of Concurrent Tones in Music with Colours. Univ.
of Ljubljana, Slovenia.

S. Dixon, W. Goebl, and G. Widmer. The performance worm: Real time visualisation based on
langner’s representation. In M. Nordahl, editor, Proceedings of the 2002 International Computer
Music Conference, pages 361-364, San Francisco, CA, 2002. International Computer Music Associa-
tion.

S. Sigtia and S. Dixon. Improved music feature learning with deep neural networks. In Proceedings of
the 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2014.

Sander Dieleman and Benjamin Schrauwen. End-to-end learning for music audio. Conference Paper
in Proceedings - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing,
May 2014.

J. Nam, J. Herrera and K. Lee. A Deep Bag-of-Features Model for Music Auto-Tagging. Eprint
arXiv:1508.04999. 2015.

J. Schliiter. Unsupervised Audio Feature Extraction for Music Similarity Estimation. Technische Uni-
versitdt Miinchen, Fakultéit fir Informatik.

E.J. Humphrey, J.P. Bello, Y. LeCun. Feature Learning and Deep Architectures: New Directions for
Music Informatics. Journal of Intelligent Information Systems 41 (3), 461-481.

Felix Turner. Loop Waveform Visualizer. https://airtightinteractive.com/demos/js/reactive.

[10] Annaliese Micallef Grima. Visual music: development of an art. 2015.

[11] Youtube-dl. https://rg3.github.io/youtube-dl.



	Abstract
	Background and related work
	Method
	Features extraction
	Real-time visualization

	Results and discussion

